Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Medicine Maker
  • Explore

    Explore

    • Latest
    • Features
    • Interviews
    • Business & Trends
    • Technology & Manufacturing
    • Product Profiles
    • White Papers

    Featured Topics

    • Biopharma
    • Small Molecules
    • Cell & Gene
    • Future of Pharma

    Issues

    • Latest Issue
    • Archive
    • Cell and Gene Therapy Supplement
  • Topics

    Topics

    • Drug Discovery
    • Development & Clinical
    • Formulation
    • Drug Delivery
    • Bioprocessing
    • Small Molecules
    • Cell and Gene
    • Facilities & Equipment
    • Outsourcing
    • Packaging
    • Supply Chain
    • Regulation & Standards
  • News & Blogs

    News & Blogs

    • Industry News
    • Research News
    • Blogs
  • Events
    • Live Events
    • Webinars
  • Community & Awards

    Community & Awards

    • Power List
    • Sitting Down With
    • Innovation Awards
    • Company of the Year Awards
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
    • eBooks
Subscribe
Subscribe
The Medicine Maker / Issues / 2016 / Articles / Jun / Investigating the deagglomeration profiles of dry powder inhaler formulations
Discovery & Development Business Practice Drug Delivery Ingredients Formulation Dosage Forms Technology and Equipment Analytical Science Trends & Forecasts Drug Delivery Formulation Facilities & Equipment Technology & Manufacturing

Investigating the deagglomeration profiles of dry powder inhaler formulations

06/16/2016 1 min read

Share

Despite being an increasingly popular method of inhaled drug delivery, dry powder inhalers (DPIs) have relatively low effectiveness in delivery of the active ingredient.  Research from Monash University highlights the value of using a Spraytec laser diffraction particle size analyzer to generate powder de-agglomeration profiles which show how dose dispersion changes as a function of the applied air flow rate.  This allows efficient comparison of the dispersion performance of different formulations in a device, supporting the efficient matching of devices to formulations.

Key Points:

  • Dry powder inhalers (DPIs) are becoming increasingly popular for inhaled drug delivery but their effectiveness in active ingredient delivery is relatively low
  • Improving the efficiency of drug delivery by DPIs relies on understanding and controlling formulation de-agglomeration
  • Spraytec delivers real-time measurement of particle size during device actuation, enabling the generation of a ‘de-agglomeration profile’ that describes how formulation dispersion changes as a function of the applied air flow rate
  • The performance of different DPI formulations in a device can be assessed by measuring and comparing their de-agglomeration profiles  
>> Download the full article for FREE  

Malvern Instruments provides the materials and biophysical characterization technology and expertise that enable scientists and engineers to understand and control the properties of dispersed systems. These systems range from proteins and polymers in solution, particle and nanoparticle suspensions and emulsions, through to sprays and aerosols, industrial bulk powders and high concentration slurries. Used at all stages of research, development and manufacturing, Malvern’s materials characterization instruments provide critical information that helps accelerate research and product development, enhance and maintain product quality and optimize process efficiency. Our products reflect Malvern’s drive to exploit the latest technological innovations and our commitment to maximizing the potential of established techniques. They are used by both industry and academia, in sectors ranging from pharmaceuticals and biopharmaceuticals to bulk chemicals, cement, plastics and polymers, energy and the environment. Malvern systems are used to measure particle size, particle shape, zeta potential, protein charge, molecular weight, mass, size and conformation, rheological properties and for chemical identification, advancing the understanding of dispersed systems across many different industries and applications. Headquartered in Malvern, UK, Malvern Instruments has subsidiary organizations in all major European markets, North America, Mexico, China, Japan and Korea, a joint venture in India, a global distributor network and applications laboratories around the world. www.malvern.com severine.michel@malvern.com

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

False

Advertisement

Recommended

False

Related Content

What Trump’s Latest Moves Mean for the Industry
Business Practice Standards & Regulation Trends & Forecasts Bioprocessing - Upstream & Downstream
What Trump’s Latest Moves Mean for the Industry

May 27, 2025

6 min read

Audrey Greenberg’s latest insight on US-based manufacturing, Trump’s “Administration for A Healthy America”, and an ever-shifting regulatory environment.

Big Bad Pharma?
Business Practice Trends & Forecasts
Big Bad Pharma?

December 1, 2014

0 min read

The Ebola media frenzy has reminded the public how selfish our industry is. But, somehow, that doesn’t sound quite right...

Access All Areas
Business Practice Trends & Forecasts
Access All Areas

December 1, 2014

0 min read

The 2014 Access to Medicine index shows progress – but companies remain “conservative”

Care to ‘Patent Dance’?
Business Practice Trends & Forecasts
Care to ‘Patent Dance’?

December 1, 2014

0 min read

Amgen accuses Sandoz of snubbing its advances in a complex biosimilar dispute

The Medicine Maker
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.