Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Medicine Maker
  • Explore

    Explore

    • Latest
    • Features
    • Interviews
    • Business & Trends
    • Technology & Manufacturing
    • Product Profiles
    • White Papers

    Featured Topics

    • Biopharma
    • Small Molecules
    • Cell & Gene
    • Future of Pharma

    Issues

    • Latest Issue
    • Archive
    • Cell and Gene Therapy Supplement
  • Topics

    Topics

    • Drug Discovery
    • Development & Clinical
    • Formulation
    • Drug Delivery
    • Bioprocessing
    • Small Molecules
    • Cell and Gene
    • Facilities & Equipment
    • Outsourcing
    • Packaging
    • Supply Chain
    • Regulation & Standards
  • News & Blogs

    News & Blogs

    • Industry News
    • Research News
    • Blogs
  • Events
    • Live Events
    • Webinars
  • Community & Awards

    Community & Awards

    • Power List
    • Sitting Down With
    • Innovation Awards
    • Company of the Year Awards
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
    • eBooks
Subscribe
Subscribe
The Medicine Maker / Issues / 2016 / Articles / Dec / Direct visualization, sizing and concentration measurements of drug delivery nanoparticles
Manufacture Business Practice Drug Delivery Ingredients Formulation Small Molecules Technology and Equipment Vaccines Trends & Forecasts Drug Delivery Formulation Small Molecules Facilities & Equipment Technology & Manufacturing

Direct visualization, sizing and concentration measurements of drug delivery nanoparticles

12/22/2016 1 min read

Share

Introduction
The use of nanoparticles in drug delivery continues to grow rapidly. Nanoparticles offer excellent pharmacokinetic properties, controlled and sustained release, and targeting of specific cells, tissues or organs. Interest in nanoparticle drug delivery is also driven by the diminishing rate of discovery of new biologically active compounds that can be exploited therapeutically to treat disease. With fewer new drugs entering the market every year, interest in the use of nanoparticles’ versatile and multifunctional structures for the delivery of drugs is swiftly increasing. All these features can improve the efficacy of existing drugs (Malam et al., 2011). Nanoparticles used in drug delivery have been defined as colloidal systems of submicron size that can be constructed from a large variety of materials in a large variety of compositions. Commonly defined nanoparticle vectors include: liposomes, micelles, dendrimers, solid lipid nanoparticles, metallic nanoparticles, semiconductor nanoparticles and polymeric nanoparticles. In their many guises, nanoparticles have been extensively employed to deliver drugs, genes, vaccines and diagnostics into specific cells/tissues. (Ram et al.
, 2011). When considering a nanomaterial drug delivery system, size of the nanoparticle is a key parameter as it directly influences the processes of delivery, uptake, degradation and clearance from the body. For example, nanoparticles in the range of 30 nm to a few hundred nm in diameter can passively accumulate at the site of tumours due to leaky vasculature, phagocytosis favours particles >500 nm, whilst biliary and renal clearance occurs with particles <30 nm and <8 nm respectively. In addition, the liver has a lower uptake of smaller particles (25 nm and 50 nm) compared to larger particles (200 nm and 300 nm). Accurate measurement of the particles being administered is therefore imperative to many systems and processes.

Analysis of drug delivery systems by NTA

Liposomes Liposomes (Figure 1) have been the subject of significant research and development efforts for many years and are currently the most common targeted drug delivery system. Liposomes have been approved as a delivery system for amphotericin B for fungal or protozoal infections, doxorubicin for breast cancer treatment, and for vaccines for hepatitis A and influenza. The use and potential of liposomes in drug delivery continues to grow in importance. The reasons are clear:
  • Therapeutics delivered via liposomes may be protected from the actions of metabolizing enzymes
  • Lipophilic substances may be made soluble by the use of liposomes
  • Therapeutics can be targeted to specific areas by attaching specific ligands to the liposome
  • Liposomes are readily absorbed by cells
  • The rate of release may be controlled by the selection of liposome
  • Using liposomes as a delivery vehicle allows potentially lower or less frequent doses to be used, potentially reducing toxicity and side-effects
  • Liposomes can carry biological substances such as proteins and DNA
The size of the liposomes used is increasingly being recognized as an important factor in treatment efficacy. A drug delivery liposome’s size may affect its circulation and residence time in the blood, the efficacy of the targeting, its rate of cell absorption (or endocytosis) and, ultimately, the successful release of its payload. Such size considerations are hugely important to all nanoscale drug delivery systems.

Figure 1. Typical Liposome Structure Sizing liposomes with NTA Malvern’s NanoSight instrument range accurately and rapidly sizes and measures concentration of liposomes in water and other solvents. Only small volumes and very little sample preparation is required. The instruments enable individual liposomes in suspension to be visualized and their Brownian motion tracked – enabling particle size distributions, based on individual particles, to be built up in a matter of seconds.  >> Download the full Application Note as PDF

Malvern Instruments provides the materials and biophysical characterization technology and expertise that enable scientists and engineers to understand and control the properties of dispersed systems. These systems range from proteins and polymers in solution, particle and nanoparticle suspensions and emulsions, through to sprays and aerosols, industrial bulk powders and high concentration slurries. Used at all stages of research, development and manufacturing, Malvern’s materials characterization instruments provide critical information that helps accelerate research and product development, enhance and maintain product quality and optimize process efficiency. Our products reflect Malvern’s drive to exploit the latest technological innovations and our commitment to maximizing the potential of established techniques. They are used by both industry and academia, in sectors ranging from pharmaceuticals and biopharmaceuticals to bulk chemicals, cement, plastics and polymers, energy and the environment. Malvern systems are used to measure particle size, particle shape, zeta potential, protein charge, molecular weight, mass, size and conformation, rheological properties and for chemical identification, advancing the understanding of dispersed systems across many different industries and applications. Headquartered in Malvern, UK, Malvern Instruments has subsidiary organizations in all major European markets, North America, Mexico, China, Japan and Korea, a joint venture in India, a global distributor network and applications laboratories around the world. www.malvern.com severine.michel@malvern.com

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

False

Advertisement

Recommended

False

Related Content

What Trump’s Latest Moves Mean for the Industry
Business Practice Standards & Regulation Trends & Forecasts Bioprocessing - Upstream & Downstream
What Trump’s Latest Moves Mean for the Industry

May 27, 2025

6 min read

Audrey Greenberg’s latest insight on US-based manufacturing, Trump’s “Administration for A Healthy America”, and an ever-shifting regulatory environment.

Big Bad Pharma?
Business Practice Trends & Forecasts
Big Bad Pharma?

December 1, 2014

0 min read

The Ebola media frenzy has reminded the public how selfish our industry is. But, somehow, that doesn’t sound quite right...

Access All Areas
Business Practice Trends & Forecasts
Access All Areas

December 1, 2014

0 min read

The 2014 Access to Medicine index shows progress – but companies remain “conservative”

Care to ‘Patent Dance’?
Business Practice Trends & Forecasts
Care to ‘Patent Dance’?

December 1, 2014

0 min read

Amgen accuses Sandoz of snubbing its advances in a complex biosimilar dispute

The Medicine Maker
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.