Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Medicine Maker
  • Explore

    Explore

    • Latest
    • Features
    • Interviews
    • Business & Trends
    • Technology & Manufacturing
    • Product Profiles
    • White Papers

    Featured Topics

    • Biopharma
    • Small Molecules
    • Cell & Gene
    • Future of Pharma

    Issues

    • Latest Issue
    • Archive
    • Cell and Gene Therapy Supplement
  • Topics

    Topics

    • Drug Discovery
    • Development & Clinical
    • Formulation
    • Drug Delivery
    • Bioprocessing
    • Small Molecules
    • Cell and Gene
    • Facilities & Equipment
    • Outsourcing
    • Packaging
    • Supply Chain
    • Regulation & Standards
  • News & Blogs

    News & Blogs

    • Industry News
    • Research News
    • Blogs
  • Events
    • Live Events
    • Webinars
  • Community & Awards

    Community & Awards

    • Power List
    • Sitting Down With
    • Innovation Awards
    • Company of the Year Awards
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
    • eBooks
Subscribe
Subscribe
The Medicine Maker / Issues / 2015 / Articles / May / Making Room for Improvement
Discovery & Development Analytical Science

Making Room for Improvement

To make way for more flexible approved analytical methods in pharma, we need a better understanding of the underlying scientific principles.

By Dennis Åsberg 05/05/2015 1 min read

Share

An article in a recent issue of The Analytical Scientist – “Breaking Out of the Black Box” (1) – highlights the problem of users not understanding the underlying science in analytical techniques, blindly generating data without the appropriate context and interpretation. The article by Wolfgang Lindner – a pioneer in chiral analysis – caught my attention because black box thinking is one of the problems I’ve been working on for more than a year. I am looking for more flexibility in developing regulatory-approved analytical methods for the pharmaceutical industry. Approved methods are locked and don’t require much scientific knowledge – the user must follow them rigidly and there is little opportunity for improvement.

The core of this project, therefore (which was part of a larger study on molecular interactions) was to shift the focus to a more science-based approach that requires an understanding of the analytical methods, thereby enabling continuous improvements. Anders Karlsson (AstraZeneca R&D in Mölndal, Sweden) came up with the idea that launched the project. He wanted to continuously improve his quality control procedures after the original methods had been approved by regulatory agencies. Actually, this is already possible to a certain extent, but only if the analytical method is filed according to the European Medicines Agency’s (EMA) Quality-by-Design guidelines. That is to say, the guidelines do allow post-approval changes if – and only if – the changes are inside the original design space, which can be limiting. For example, a pharmaceutical company that had developed and filed a high-performance liquid chromatography (HPLC)-based quality control method a few years before the commercialization of ultra-HPLC  (UHPLC) would find it difficult, if not impossible, to upgrade its quality process simply because it would not have been able to include UHPLC conditions in the original design space. Done correctly, switching from HPLC to UHPLC is a minor modification because the essential difference lies in column dimensions and particle size – and yet it would offer significant improvements on analytical performance. However, according to the regulations, the changeover is not possible without resubmitting the method to the EMA.

Working with Karlsson and Mikael Nilsson, Cambrex Karlskoga, and my supervisors, Jörgen Samuelsson and Torgny Fornstedt, I launched a project with the goal of finding a way to develop analytical methods that allow minor post-approval changes – even if they are outside of the original design space. We modified an original quality control method for esomeprazole magnesium (Nexium), by switching from HPLC to UHPLC. Our first and most important step was to investigate the differences between HPLC and UHPLC in depth, which allowed us to explain the differences scientifically, making method transfer easier. I strongly agree with Lindner that we should strive to understand the underlying principles behind the analytical methods we use every day in drug development and manufacturing. Greater understanding is often the solution to creating smart and efficient analytical methods. On a personal note, the project has also taught me that you can’t be an expert on everything and that cooperation is needed to produce good and robust analytical methods. I believe that one of the reasons behind the success of the project was the diversity in backgrounds, perspectives and skills of the people involved.

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. https://theanalyticalscientist.com/issues/0314/breaking-out-of-the-black-box/

About the Author(s)

Dennis Åsberg

Dennis Åsberg is a PhD student in the Swedish Separation Science research group at the department of Engineering and Chemical Sciences at Karlstad University, led by Torgny Fornstedt and Jörgen Samuelsson. “I started out studying chemical engineering and never planned on becoming a PhD student, but doing my master thesis with Torgny’s group got me interested in separation science. After working as a research assistant for a short while, I became a fulltime PhD student and am now halfway to the finishing line.”

More Articles by Dennis Åsberg

False

Advertisement

Recommended

False

Related Content

Electrifying R&D Acceleration
Small Molecules Analytical Science
Electrifying R&D Acceleration

December 2, 2014

0 min read

Electrochemical reaction cells are finding new applications in the pharma R&D lab that could offer big time and cost savings...

The Lab of the Future: Combining Automation with Digital Tools
Contract Development Services Analytical Science Technology and Equipment Digital Technologies
The Lab of the Future: Combining Automation with Digital Tools

February 25, 2025

6 min read

How do you scale up operations without adding headcount or significantly increasing investment in instrumentation? The answer: automation and workflow scheduling software.

SORS and the Power of Light in Pharma
Ingredients Analytical Science Technology and Equipment
SORS and the Power of Light in Pharma

January 17, 2025

7 min read

Understanding the role of spatially offset Raman spectroscopy in identifying raw materials, counterfeit medicines, and more

Facing Up to the New Nemesis of Pharma: Nitrosamines
Quality & Compliance Small Molecules Process Control Analytical Science Ingredients
Facing Up to the New Nemesis of Pharma: Nitrosamines

September 5, 2024

8 min read

What’s going on with nitrosamines in pharmaceutical products? Naiffer Romero, Principal Scientist at the US Pharmacopeia walks us through frequently asked questions.

The Medicine Maker
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.